Form C: Type Test Verification Report All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98. This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register. If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted. | Manufactu | rer's referen | ce number | | | | | | | |---|---------------------|----------------|------------|--|------------------------|--|--|--| | Micro-generator technology | | | | SYNK-3.6K-SG04LP1
SYNK-3K-SG04LP1 | | | | | | Manufactu | rer name | | SunSynk | Ltd. | | | | | | Address | | | | Flat A, 3/F Wai Yip Industrial Building,
171 Wai Yip Street,Kwun Tong,Hong Kong | | | | | | Tel | +852 2884 | 4318 | | Fax | | | | | | E-mail | kgoughu
china.co | k@globalt
m | ech- | Web site | http://www.sunsynk.com | | | | | | | Connection | on Option | Option | | | | | | Registered
use separat | te sheet if | 3.6/3 | kW single | kW single phase | | | | | | more than of connection | 100000 | NA | kW three p | hase | | | | | | | | NA | kW two pha | kW two phases in three phase system | | | | | | NA | | | kW two pha | kW two phases split phase system | | | | | | Energy storage 3.6/3 capacity for Electricity Storage devices | | kWh | kWh | | | | | | Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above Fully Type Tested reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98. | Signed | A. | On behalf of | SunSynk Ltd. | |--------|----|--------------|--------------| | | | | | MM Note that testing can be done by the **Manufacturer** of an individual component or by an external test house. Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests. Operating Range: This test should be carried out as specified in A.1.2.10. Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred. | Test 1 | PASS | |------------------------------------|------| | Voltage = 85% of nominal (195.5 V) | | | Frequency = 47.0 Hz | | | Power factor = 1 | | | Period of test 20 seconds | | | | | | Test 2 | PASS | | Voltage = 85% of nominal (195.5 V) | | | Frequency = 47.5 Hz | | | Power factor = 1 | | | Period of test 90 minutes | | | | | | Test 3 | PASS | | Voltage = 110% of nominal (253 V). | | | Frequency = 51.5 Hz | | | Power factor = 1 | | | Period of test 90 minutes | | | | | | Test 4 | PASS | | Voltage = 110% of nominal (253 V). | | | Frequency = 52.0 Hz | | | Power factor = 1 | | | Period of test 15 minutes | | | | | | | | ## ENA Engineering Recommendation G98 Issue 1 Amendment 6 2021 | Test 5 Voltage = 100% of nominal (230 V). Frequency = 50.0 Hz Power factor = 1 Period of test 90 minutes | PASS | |--|------| | Test 6 RoCoF withstand Confirm that the Micro-Generating Plant is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs-8 as measured over a period of 500 ms. | PASS | 1 **Power Quality – Harmonics**: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous). | | | Micro | o-generator | tested to B | S EN 61000-3-2 | | |--------------------|--|---------------------------------|-------------------------------------|-------------|--|---| | Micro-g | enerator rating
(rpp) | per phase | 3.6 | | kW | | | harmoni
phases. | nase Micro-ge r
ic measuremen
If the harmonic
blease replicate
ase. | ts are identic
s are not ide | cal for all thre
entical for eac | ch | | , | | Harmo
nic | At 45-58 Registered | | 100% of Ro | | | | | | Measured
Value MV in
Amps | | Measured
Value MV
in Amps | | Limit in BS EN
61000-3-2 in
Amps | Higher limit for odd harmonics 21 and above | | 2 | 0.082 | 0.485 | 0.173 | 0.901 | 1.080 | | | 3 | 0.026 | 0.142 | 0.065 | 0.234 | 2.300 | | | 4 | 0.014 | 0.082 | 0.029 | 0.077 | 0.430 | | | 5 | 0.008 | 0.055 | 0.021 | 0.045 | 1.140 | | | 6 | 0.007 | 0.053 | 0.017 | 0.041 | 0.300 | | | 7 | 0.008 | 0.055 | 0.015 | 0.031 | 0.770 | | | 8 | 0.008 | 0.042 | 0.013 | 0.025 | 0.230 | | | 9 | 0.007 | 0.037 | 0.012 | 0.027 | 0.400 | | | 10 | 0.004 | 0.035 | 0.010 | 0.022 | 0.184 | | | 11 | 0.005 | 0.033 | 0.008 | 0.015 | 0.330 | | | 12 | 0.005 | 0.025 | 0.009 | 0.017 | 0.153 | | | 13 | 0.006 | 0.026 | 0.006 | 0.016 | 0.210 | | | 14 | 0.004 | 0.020 | 0.008 | 0.013 | 0.131 | | | 15 | 0.003 | 0.019 | 0.008 | 0.025 | 0.150 | | ¹ See the note in A.2.3.1 if 45-55% of Registered Capacity is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of Registered Capacity should be stated. The additional comments box at the end of the harmonics test sheet can be used for this. M ## ENA Engineering Recommendation G98 Issue 1 Amendment 6 2021 | 16 | 0.004 | 0.019 | 0.007 | 0.018 | 0.115 | | |----|-------|-------|-------|-------|-------|-------| | 17 | 0.003 | 0.015 | 0.009 | 0.007 | 0.132 | | | 18 | 0.002 | 0.016 | 0.013 | 0.013 | 0.102 | | | 19 | 0.003 | 0.014 | 0.008 | 0.009 | 0.118 | | | 20 | 0.003 | 0.015 | 0.004 | 0.011 | 0.092 | | | 21 | 0.002 | 0.009 | 0.004 | 0.019 | 0.107 | 0.160 | | 22 | 0.004 | 0.008 | 0.005 | 0.017 | 0.084 | | | 23 | 0.003 | 0.009 | 0.007 | 0.012 | 0.098 | 0.147 | | 24 | 0.002 | 0.010 | 0.006 | 0.008 | 0.077 | | | 25 | 0.002 | 0.015 | 0.007 | 0.008 | 0.090 | 0.135 | | 26 | 0.001 | 0.023 | 0.006 | 0.009 | 0.071 | | | 27 | 0.003 | 0.012 | 0.004 | 0.013 | 0.083 | 0.124 | | 28 | 0.002 | 0.015 | 0.005 | 0.014 | 0.066 | | | 29 | 0.002 | 0.017 | 0.006 | 0.015 | 0.078 | 0.117 | | 30 | 0.001 | 0.019 | 0.004 | 0.019 | 0.061 | | | 31 | 0.002 | 0.011 | 0.003 | 0.005 | 0.073 | 0.109 | | 32 | 0.004 | 0.009 | 0.004 | 0.007 | 0.058 | | | 33 | 0.002 | 0.008 | 0.007 | 0.013 | 0.068 | 0.102 | | 34 | 0.003 | 0.005 | 0.003 | 0.015 | 0.054 | | | 35 | 0.003 | 0.008 | 0.004 | 0.016 | 0.064 | 0.096 | | 36 | 0.002 | 0.007 | 0.006 | 0.005 | 0.051 | | | 37 | 0.002 | 0.011 | 0.005 | 0.005 | 0.061 | 0.091 | | 38 | 0.003 | 0.012 | 0.004 | 0.011 | 0.048 | | | 39 | 0.002 | 0.003 | 0.005 | 0.008 | 0.058 | 0.087 | | 40 | 0.002 | 0.005 | 0.003 | 0.007 | 0.046 | | 111 Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below. Additional comments: Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous). The standard test impedance is $0.4~\Omega$ for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and $0.24~\Omega$ for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is $0.98~\mathrm{or}$ above): d max normalised value = (Standard impedance / Measured impedance) x Measured value. Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance. The stopping test should be a trip from full load operation. The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test. The test date and location must be declared. | Test start date | 2022/9/ | 20 | | Test
end
date | 2022/9/20 |) | | | | |--|----------|----------|---------|---------------------|-----------|-----------|-----------|-------------------------|--| | Test location | No.26 | South | YongJia | ng Road, I | Daqi, Bei | lun, Ning | Bo, China | Э. | | | | Starting | Starting | | | Stopping | | | Running | | | | d(max) | d(c) | d(t) | d(max) | d(c) | d(t) | Pst | P _{it} 2 hours | | | Measured
Values at test
impedance | 0.45 | 0.38 | 0 | 036 | 0.3 | 0 | 0.173 | 0.069 | | | Normalised to standard impedance | 0.45 | 0.38 | 0 | 036 | 0.3 | 0 | 0.173 | 0.069 | | | Normalised to required maximum impedance | NA | | Limits set
under BS EN | 4% | 3.3% | 3.3% | 4% | 3.3% | 3.3% | 1.0 | 0.65 | | //M | 61000-3-11 | | | | | | | |-----------------------|---|-------|---|---|--------|---| | | | | | | | | | Test
Impedance | R | 0.4 | Ω | X | 0.25 | Ω | | Standard
Impedance | R | 0.4 ^ | Ω | Х | 0.25 ^ | Ω | | Maximum
Impedance | R | NA | Ω | Х | NA | Ω | ^{*}Applies to three phase and split single phase Micro-generators. Delete as appropriate. Power quality - DC injection: This test should be carried out in accordance with A 1.3.4 as applicable. The % DC injection ("as % of rated AC current" below) is calculated as follows: % DC injection = Recorded DC value in Amps / base current where the base current is the Registered Capacity (W) / 230 V. The % DC injection should not be greater than 0.25%. | Test power level | 20% | 50% | 75% | 100% | |--------------------------------|--------|---------|---------|---------| | Recorded DC value in Amps | 7.2 mA | 9.93 mA | 10.12mA | 10.05mA | | as % of
rated AC
current | 0.046% | 0.063% | 0.064% | 0.064% | | Limit | 0.25% | 0.25% | 0.25% | 0.25% | **Power Quality – Power factor**: This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test. | | 216.2 V | 230 V | 253 V | | |--------------------|---------|-------|-------|--| | Measured value | 0.996 | 0.999 | 0.998 | | | Power Factor Limit | >0.95 | >0.95 | >0.95 | | **Protection – Frequency tests:** These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated. [^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate. | Function | Setting | | Trip test | | "No trip tests" | | |-------------|-----------|---------------|-----------|---------------|--------------------|-----------------| | | Frequency | Time
delay | Frequency | Time
delay | Frequency /time | Confirm no trip | | U/F stage 1 | 47.5 Hz | 20 s | 47.51 | 20.1s | 47.7 Hz
30 s | no trip | | U/F stage 2 | 47 Hz | 0.5 s | 47 | 0.6s | 47.2 Hz
19.5 s | no trip | | | - | | | | 46.8 Hz
0.45 s | no trip | | O/F stage | 52 Hz | 0.5 s | 52.01 | 0.6s | 51.8 Hz
120.0 s | no trip | | | | | | | 52.2 Hz
0.45 s | no trip | Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error. **Protection – Voltage tests:** These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated. | Function | Setting | | Trip test | | "No trip tests" | | |-------------|---------|---------------|-----------|---------------|-------------------|-----------------| | | Voltage | Time
delay | Voltage | Time
delay | Voltage /time | Confirm no trip | | U/V | 184 V | 2.5 s | 184.1V | 3s | 188 V
5.0 s | no trip | | | | | | | 180 V
2.45 s | no trip | | O/V stage 1 | 262.2 V | 1.0 s | 263V | 1.2s | 258.2 V
5.0 s | no trip | | O/V stage 2 | 273.7 V | 0.5 s | 274V | 0.55s | 269.7 V
0.95 s | no trip | | | | | | | 277.7 V
0.45 s | no trip | Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error. **Protection – Loss of Mains test:** For PV **Inverters** shall be tested in accordance with BS EN 62116. Other **Micro-generators** should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power. To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | |--|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Limit is 0.5 s | 20.50ms | 401.25ms | 413.55ms | 22.15ms | 426.22ms | 436.41ms | | For Multi phase M
single fuse as well | | | t the device s | huts down cor | rectly after the | removal of | | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph1
fuse removed | NA | NA | NA | NA | NA | NA | | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph2
fuse removed | NA | NA | NA | NA | NA | NA | | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph3
fuse removed | NA | NA | NA | NA | NA | NA | | Note for technologestablishing that the 1.0 s for these tech | e trip occurred | | | | | | | Indicate additional | shut down time | e included in al | bove results. | | | NA m | ² See the note in A.2.2.4 if the suggested loading levels are below the minimum stable operating level. If alternative loading levels are chosen, the level should be indicated on the test form and the reason for not testing at 10%/55% of **Registered Capacity** should be stated. The additional comments box at the end of the loss of mains test sheet can be used for this. M For Inverters tested to BS EN 62116 the following sub set of tests should be recorded in the following table Test Power and 33% 66% 100% 33% 66% 100% imbalance -5% Q -5% Q -5% P +5% Q +5% Q +5% P Test 22 Test 12 Test 5 Test 31 Test 21 Test 10 Trip time. Limit is NA NA NA NA NA NA $0.5 \, s^3$ Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the Micro-generating Plant does not trip under positive / negative vector shift. | | Start Frequency | Change | Confirm no trip | |-----------------------|-----------------|--------------|-----------------| | Positive Vector Shift | 49.0 Hz | +50 degrees | no trip | | Negative Vector Shift | 50.0 Hz | - 50 degrees | no trip | **Protection – Frequency change, RoCoF Stability test:** The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test. | Ramp range | Test frequency ramp: | Test Duration | Confirm no trip | |--------------------|-------------------------|---------------|-----------------| | 49.0 Hz to 51.0 Hz | +0.95 Hzs ⁻¹ | 2.1 s | no trip | | 51.0 Hz to 49.0 Hz | -0.95 Hzs ⁻¹ | 2.1 s | no trip | **Limited Frequency Sensitive Mode** – **Overfrequency test:** This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.8. | Test sequence at Registered Capacity >80% | Measured Active Power Output | Frequency | Primary Power Source | Active
Power
Gradient | |---|------------------------------|-----------|----------------------|-----------------------------| | Step a) 50.00 Hz ±0.01 Hz | 3600 | 50.00 | 3700W | - | | Step b) 50.45 Hz ±0.05 Hz | 3560 | 50.45 | | - | | Step c) 50.70 Hz ±0.10 Hz | 3382 | 50.70 | | - | | Step d) 51.15 Hz ±0.05 Hz | 3060 | 51.15 | | - | | Step e) 50.70 Hz ±0.10 Hz | 3379 | 50.70 | | - | ³ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form. 1 h | Step f) 50.45 Hz ±0.05 Hz | 3562 | 50.45 | | - | |--|------------------------------|-----------|----------------------|-----------------------------| | Step g) 50.00 Hz ±0.01 Hz | 3602 | 50.00 | | | | Test sequence at Registered Capacity 40% - 60% | Measured Active Power Output | Frequency | Primary Power Source | Active
Power
Gradient | | Step a) 50.00 Hz ±0.01 Hz | 1800 | 50.00 | 1850W | - | | Step b) 50.45 Hz ±0.05 Hz | 1765 | 50.45 | | - | | Step c) 50.70 Hz ±0.10 Hz | 1583 | 50.70 | | - * | | Step d) 51.15 Hz ±0.05 Hz | 1263 | 51.15 | \ \ | - | | Step e) 50.70 Hz ±0.10 Hz | 1580 | 50.70 | | - | | Step f) 50.45 Hz ±0.05 Hz | 1766 | 50.45 | | - | | Step g) 50.00 Hz ±0.01 Hz | 1801 | 50.00 | | | Power output with falling frequency test: This test should be carried out in accordance with A.1.2.7. | Test sequence | Measured Active Power Output | Frequency | Primary power source | |---|------------------------------|-----------|----------------------| | Test a) 50 Hz ± 0.01 Hz | 3601W | 50Hz | 3693W | | Test b) Point between 49.5 Hz and 49.6 Hz | 3600.8W | 49.55Hz | 3692W | | Test c) Point between 47.5 Hz and 47.6 Hz | 3659.9W | 47.55Hz | 3692W | NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes #### Re-connection timer. Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made. | Time delay setting | Measured
delay | Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2. | | | | | |--------------------------|--|---|--------------------|-----------------|-----------------|--| | 60S | 62S | At 266.2 V | At 180.0 V | At 47.4 Hz | At 52.1 Hz | | | Confirmation generator d | that the Micro-
oes not re-connect. | No
reconnecti
on | No
reconnection | No reconnection | No reconnection | | Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if 1 Ch | For machines with electro-magnetic output | | | For Inverter output | | | |--|-----------------|-------|---------------------|--------|------------| | Parameter | Symbol | Value | Time after fault | Volts | Amps | | Peak Short Circuit current | ip | N/A | 20 ms | 20.15V | 0.182A | | Initial Value of aperiodic current | A | N/A | 100 ms | 11.15V | 0.148A | | Initial symmetrical short-circuit current* | lk | N/A | 250 ms | N/A | N/A | | Decaying (aperiodic) component of short circuit current* | İDC | N/A | 500 ms | N/A | N/A | | Reactance/Resistance Ratio of source* | X/ _R | N/A | Time to trip | 0.152 | In seconds | For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals. * Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot # Logic Interface (input port) | Confirm that an input port is provided and can be used to reduce the Active Power output to zero | Yes | |---|-----| | Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used) | Yes | | Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected). | NA | | It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s. | NA | ### Cyber security Confirm that the **Manufacturer** or **Installer** of the **Micro-generator** has provided a statement describing how the **Micro-generator** has been designed to comply with cyber security requirements, as detailed in 9.7. Yes #### Additional comments - 1. Product have the same circuit and construction, only the output power are different and controlled by software, And the test result can refer to the test model. - 2. The inverter is equipped with Modbus interface, Supports remote monitoring and parameter modification; Connect the battery BMS and Connect meter. - 3. The inverter has an RJ45 interface that accepts signals from the DNO, the RJ45 logic interface will take the form of a simple binary output, When the signal is 0, the inverter works normally, When the signal is 1, the inverter will reduce its Active Power to zero within 5 s.