

ERLT

A S

V

TEST REPORT Engineering recommendation G99

Requirements for the connection of generation equipment in parallel with public distribution networks

Report reference number:	17TH0199-G99/1-4_4
Date of issue:	2020-09-30
Total number of pages:	56
Testing laboratory name: Address: Accreditation	Bureau Veritas Consumer Products Services Germany GmbH Businesspark A96 86842 Türkheim Germany
Applicant's name:	SMA Solar Technology AG
Address	Sonnenallee 1, 34266 Niestetal
Test specification	
Standard:	G99/1-6:2020
	Tests for Type A Inverter Connected Power Generating Modules
Certificate:	Certificate of compliance
Test report form number:	G99/1
Master TRF:	Bureau Veritas Consumer Products Services Germany GmbH
Test item description	Photovoltaic inverter
Trademark:	SMA
Model / Type:	STP 50-40
Ratings:	STP 50-40
MPP DC voltage range [V]	500 – 800
Input DC voltage range [V] :	Max. 1000
Input DC current [A]:	6 x 20
Output AC voltage [V] :	400 3 / N / PE @ 50 / 60 Hz
Output AC current [A]:	72,5

Page 2 of 56

Testing Location:	Bureau Veritas Consumer Products Services Germany GmbH				
Address :	Businesspark A96, 86842 Türkheim, Germany				
Testing Location	SMA Solar Technology AG				
Address :	Sonnenallee 1, 34266 Niestetal, Germany				
Tested by (name and signature): Approved by (name and signature)	Christian Schaller Georg Loritz	Georg Loritz			
Manufacturer's name	SMA Solar Technology AG				
Manufacturer address	Sonnenallee 1, 34266 Niestetal				

Document Hist	tory		
Date	Internal reference	Modification / Change / Status	Revision
2019-04-17	Christian Schaller	Initial report was written	0
2019-06-07	Christian Schaller	- comment about logic interface included	1
2019-06-09	Christian Schaller	- A7.1.3 with standard droop test of 5%	2
		- A.7.1.4.3 comment attached and updated	
2019-10-09	Christian Schaller	Retesting according to G99-1/4:2019 and update to software version 3.00.05.R	3
2020-09-30	Christian Schaller	Update to G99/1-6:2020, Flicker updated	4
Supplementary	information:		

Test items particulars

Equipment mobility	Permanent connection
Operating condition	Continuous
Class of equipment	Class I
Protection against ingress of water:	IP65 according to EN 60529
Mass of equipment [kg]	83

Test case verdicts

Test case does not apply to the test object	N/A
Test item does meet the requirement:	P(ass)
Test item does not meet the requirement	F(ail)

Testing

Date of receipt of test item:	2017-11-23
Date(s) of performance of test	2019-04-16 to 2019-04-18
	2019-08-29 to 2019-09-02

General remarks:

The test result presented in this report relate only to the object(s) tested. The report shall state compliance of the tested objects with the requirements of G99-1. This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

"(see Annex #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

This Test Report consists of the following documents:

- 1. Test Results
- 2. Annex No. 1 EMC Test Report
- 3. Annex No. 2 Pictures of the unit
- 4. Annex No. 3 Test equipment list

General product information:

1. The maximum ambient temperature is specified as 60°C

2. Dimension of EUT: 800 by 600 by 886 mm.

The Solar converter converts DC voltage into AC voltage.

The input and output are protected by varistors to earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output. The output is switched off redundant by the high power switching bridge and a two relays in series. This assures that the opening of the output circuit will also operate in case of one error.

The product was tested on

Software version: 3.00.05.R

Description of the power circuit (Figure 1):

The unit is a three phase inverter. It is a non-isolated, grid-connected inverter for three phase AC grids (L1, L2, L3, N and PE). It has 12 PV-inputs (6 MPP Tracker).

The photovoltaic input is connected via lockable PV connector and provides a DC switch. The input provides an overvoltage protection build of varistors to PE. The input current is measured via a current sensor. EMC filtering is done via x-capacitors, y-capacitors and inductances. After the EMC filter, the Control Board checks the DC input voltage and current, before it is going to the IGBT modules which are also monitored by the control board with the gate driver control unit. A three level inverter makes the PWM signal. The PWM signal is smoothed by a LCL filter into a sine wave. The unit does not provide galvanic separation from input to output (transformerless inverter). The output is switched off redundant by the high power switching bridge and two relays in series. This assures that the opening of the output circuit will also operate in case of one error. Additionally varistors are provided for overvoltage protection from the grid.

Engineering recommendation G99-1				
Clause	Requirement – Test	Result – Remark Ve	rdict	
A.7	Requirements for Type Testing Power Ger	nerating Modules		
A.7.1	Power Park Module Requirements			
A.7.1.1	Certification & Type Testing Generating U	nit Requirements		
	1			
A.7.1.2	Type Verification Functional Testing of the Int	erface Protection	Р	
A.7.2.1	Disconnection times		Р	
A7.1.2.2	Over / Under Voltage		P	
A.7.1.2.3	Over / Under Frequency		Р	
A.7.1.2.4	Loss of Mains Protection		Р	
A.7.1.2.5	Re-connection		Р	
A.7.1.2.6	Frequency Drift and Step Change Stability tes	st	Р	
A.7.1.3	Limited Frequency Sensitive Mode – Over (LFSM-O)		Р	
A.7.1.4.1	Harmonics		Р	
A.7.1.4.2	Power Factor		Р	
A.7.1.4.3	Voltage Flicker		Р	
A.7.1.4.4	DC Injection		Р	
A.7.1.5	Short Circuit Current Contribution		Р	
A.7.1.6	Self-Monitoring - Solid State Disconnection		Р	
	Logic Inverface (Input port)	Required by paragraph 11.	I.3 P	

G99-1 Test Results:

A.7.1.2 Type Verification Functional Testing of the Interface Protection Functional safety - fault condition tests according DIN V VDE V 0126-1-1	Р
Note:	
Response to protection operation was tested by	
"Prüf- und Zertifizierungsstelle Fachauschuss Elektrotechnik im BG-PRÜFZERT"	
Report No.: UB.017.10/06-122	
Address:	
Berufsgenossenschaft Energie Textil Elektro	
Gustav-Heinemann-Ufer 130	
50968 Köln	
The requirements of functional safety with regard to the changeover to be met.	
The measurements for detection and control of faults in the microprocessor system are described 4. These measurements are based inter alia UL1998:1998-08, and are comparable with measure they were described in DIN V VDE 0801. The software is created in the (certified) integrated OM	ed in (1) Section rements such as 1S.
The VDE0126-1-1 test report is stored at the Bureau Veritas Consumer Products Services Germ Project: 10TH0052 for Grid Guard 4.	nany Server;

Additional spot testing of Grid Guard 4 in STP 50-40 see test results below.

Component No.	Fault	Supply voltage (V)	Test time	Fuse #	Fuse current (A)	Observation	
K1102	Short Pin 1 to Pin 2	401Vac / 793Vdc	3h 30min	ext. 100 A		Unit ceases output power, no restart until manual reset; no event of message No fire, no risk of electric shock or other hazard occurred as a result	
						of the fault.	
RA1801	Short	403Vac / 801Vdc	2h	ext. 100 A		Unit ceases output power, no restart until manual reset; event message: "6008 CPLD (HW) / Gerätestörung"	
						No fire, no risk of electric shock or other hazard occurred as a result of the fault.	
L1400	Open Pin 6	401Vac /	15min	ext. 100 A		Unit ceases output power, no restart	
		792Vdc				until manual reset	
						No fire, no risk of electric shock or other hazard occurred as a result of the fault.	
K2500	Short Pin 3 and 4	402Vac / 796Vdc	35min	ext. 100 A		Unit continues power export, but did not re-start after PV disconnect; event message: "3302, Unstable operation" (PV isolation is only checked at startup)	
						No fire, no risk of electric shock or other hazard occurred as a result of the fault.	
N2500	Open Pin 2	399Vac / 793Vdc	20min	ext. 100 A		Unit continues power export, but did not re-start after PV disconnect; event messages: "3501,Insulation failure; 3302, Unstable operation"	
						No fire, no risk of electric shock or other hazard occurred as a result of the fault.	
C2503	Short	401Vac / 798Vdc	1h 21min	ext. 100 A		Unit continues power export, but did not re-start after PV disconnect; event message: "3302, Unstable operation"	
						No fire, no risk of electric shock or other hazard occurred as a result of the fault.	
Check that the relative the PV circuit work	ays fulfil the basic king voltage.	based on	The relay provides a contact gap of at least 2 x 1,85 mm (Zettler AZSR250)				
Each active phase	Each active phase can be switched.Two relays in series used in each phase with two contacts of 2x 1,85mm (Zettler AZSR250).						
The errors in the control circuit simulate that the safety is even ensured during single fault.							

Ρ

Operating Range

Test 1: U = 195,5 V; f = 47,0 Hz; P = 1,00 Sn; cosφ = 1; at least 20 s

- Test 2: U = 195,5 V; f = 47,5 Hz; P = 1,00 Sn; $\cos\varphi = 1$; at least 20 s
- Test 2. U = 195,5 V, I = 47,5 Hz, P = 1,00 SH, $\cos \varphi = 1$, at least 90 Hills
- Test 3: U = 253,0 V; f = 51,5 Hz; P = 1,00 Sn; $\cos\varphi$ = 1; at least 90 mins
- Test 4: U = 253,0 V; f = 52,0 Hz; P = 1,00 Sn; $\cos\varphi$ = 1; at least 15 mins
- Test 5: Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs⁻¹ as measured over a period of 500 ms.

Test sequence	Voltage [V]	Frequency [Hz]	Output power [W]	Cos φ [1]	
1	195,5	47,05	43021,6	1,000	
2	195,5	47,50	42993,0	1,000	
3	253,0	51,50	50343,3	1,000	
4	253,0	51,95	50339,7	1,000	
5	Always connected				

Note:

During the tests the interface protection was disabled.

Operation at reduced power is allowed during test 1 and test 2, equal to the maximum power that can be supplied on reaching the maximum output current limit ($P \ge 0.85$ Sn).

During the sequence of test 2, automatic adjustment to reduce power in the case of over-frequency was disabled.

A.7.1.2.2 Over / Under Voltage Table 10.1 Settingd for long term parallel Operation						Р
			Fest: L1 to N			
Function	Set	ting	Trip	test	No	trip test
	Voltage	Time delay	Voltage	Time delay (s)	Voltage / time	Confirm no trip
U/V	184,0V (0,8 pu)	2,5s	183,7	2,527	188V / 5,0s	No trip
					180V / 2,45s	No trip
O/V stage 1	262,2V (1,14 pu)	1,0s	264,3	1,027	258,2V / 5,0s	No trip
O/V stage 2	273,7V (1,19 pu)	0,5s	275,7	0,527	269,7V / 0,95s	No trip
					277,7V / 0,45s	No trip
		1	Fest: L2 to N			
Function	Set	ting	Trip	test	No trip test	
	Voltage	Time delay	Voltage	Time delay (ms)	Voltage / time	Confirm no trip
U/V	184,0V (0,8 pu)	2,5s	183,7	2,527	188V / 5,0s	No trip
					180V / 2,45s	No trip
O/V stage 1	262,2V (1,14 pu)	1,0s	264,2	1,027	258,2V / 5,0s	No trip
O/V stage 2	273,7V (1,19 pu)	0,5s	275,7	0,527	269,7V / 0,95s	No trip
					277,7V / 0,45s	No trip

Test: L3 to N							
Function	Set	ting	Trip	test	No trip test		
	Voltage	Time delay	Voltage	Time delay (ms)	Voltage / time	Confirm no trip	
U/V	184,0V (0,8 pu)	2,5s	2,5s 183,8 2,527			No trip	
					180V / 2,45s	No trip	
O/V stage 1	262,2V (1,14 pu)	1,0s	264,3	1,027	258,2V / 5,0s	No trip	
O/V stage 2	273,7V (1,19 pu)	0,5s	275,8	0,527	269,7V / 0,95s	No trip	
					277,7V / 0,45s	No trip	

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s +0.5 s.

The Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Ρ

A.7.1.2.3 Over / Under Frequency

Test:							
Function	Set	ting	Trip	test	No tri	rip test	
	Frequency	Time delay	Frequency	Time delay (s)	Frequency / time	Confirm no trip	
U/F stage 1	47,5Hz	20s	47,45	20,08	47,7Hz / 30s	No trip	
U/F stage 2	47Hz	0,5s	0,5s 46,95		47,2Hz / 19,5s	No trip	
					46,8 Hz / 0,45s	No trip	
O/F	52Hz	0,5s	51,99	0,580	51,8Hz / 120s	No trip	
					52,2 Hz / 0,45s	No trip	

Note:

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s +0,5 s.

For frequency trip tests the frequency required to trip is the setting $\pm 0,1$ Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

A.7. The r	A.7.1.2.4 Loss of mains protection according BS EN 62116 The requirement is specified in section 10.2, test procedure in Annex A.2.2.4 Load imbalance (real, reactive load) for test condition A (EUT ouput = 100%)										Ρ
Load	Test condition	is			D	Fr	equency: U _N =230 ion factor Qual	: 50+/-0,1H)+/-3Vac r of chokes ity =1	z < 2%		
C	isconnection l	imit					0,	5s			
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactir (% of 6.1.	ve load Q _L in d) 1)	P _{AC} ²⁾ (% of nominal)	Q _{AC} ³⁾ (% of nominal)		P _{EUT} [W]	V _{DC} [V]	Q _f [1]	Run on Time [ms]	Remarks ⁴⁾
1	100	10	00	0	0	4	9162	750	0,977	135	Test A at BL
32	100	10	00	-10	-10	2	9153	737	1,020	94	Test A at IB
33	100	10	00	-10	-5	2	9218	738	1,047	111	Test A at IB
34	100	10	00	-10	0	4	9143	748	1,070	138	Test A at IB
35	100	10	00	-10	+5	4	19237	750	1,101	110	Test A at IB
36	100	10	00	-10	+10	4	9132	737	1,123	99	Test A at IB
37	100	1(00	-5	Test A at IB						
4	100	10	00	-5 -5 49117 750 0,995 106							Test A at IB
5	100	10	00	-5	0	2	9205	746	1,021	156	Test A at IB
6	100	1(00	-5	+5	4	19047	749	1,046	117	Test A at IB
38	100	1(00	-5	+10	4	9175	756	1,067	101	Test A at IB
39	100	1(00	0	-10	4	19086	749	0,924	88	Test A at IB
7	100	1(00	0	-5	4	19200	753	0,952	103	Test A at IB
8	100	1(00	0	+5	4	9178	750	1,000	119	Test A at IB
40	100	1(00	0	+10	4	9177	750	1,020	103	Test A at IB
41	100	1(00	+5	-10	4	9158	752	0,883	87	Test A at IB
9	100	1(00	+5	-5	4	9211	745	0,910	100	Test A at IB
10	100	1(00	+5	0	4	19259	750	0,930	141	Test A at IB
11	100	1(00	+5	+5	4	9192	748	0,954	117	Test A at IB
42	100	1(00	+5	+10	4	9190	748	0,979	105	Test A at IB
43	100	10	00	+10	-10	4	9132	744	0,850	85	Test A at IB
44	100	10	00	+10	-5	4	19149	748	0,870	101	Test A at IB
45	100	10	00	+10	0	4	9291	745	0,895	141	Test A at IB
46	100	10	00	+10	+5	4	9188	743	0,915	118	Test A at IB
47	100	10	00	+10	+10	4	9158	746	0,936	107	Test A at IB
	Parameter at 0%			L= 1	10,10mH			R= 3,17Ω	1	C=	= 1002,9 μF

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Note for technologies which have a substantial shut down time this can be added to the 0.5 seconds in establishing that the trip occurred in less than 0.5s. Maximum shut down time could therefore be up to 1.0 seconds for these technologies.

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ BL: Balance condition, IB: Imbalance condition.

Condition A:

EUT output power PEUT = Maximum ⁵⁾

EUT input voltage $^{6)}$ = >90% of rated input voltage range

⁵⁾ Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

⁶⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range =X + 0,9 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

A.7.1.2.4 Loss of mains protection according BS EN 62116															
The r	equirement is	s specifie	ed in sea	ction 10.2, t	est procedu	ure in	n Ann	ex A.2.2	4			P			
Load	imbalance (re	eal, read	tive load	d) for test co	ondition A (EUT	outpu	ut = 50 %	6 – 66 %	6)					
						Fre	quen	cy: 50+/	-0,1Hz						
	Test conditio	ns					U _N =2	230+/-3\	ac						
					Dis	stortio	on fac	tor of ch	okes <	2%					
	Quality =1														
Di	isconnection	limit						0,5s							
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactin (% of 6.1.0	ve load Q∟ in d) 1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
12	66	6	6	0 -5 32608 656 0,992 106 Test B at IB											
13	66	6	6	0 -4 32598 661 0,996 110 Test B at IB											
14	66	6	6	0 -3 32635 662 1,001 122							Test B at IB				
15	66	6	6	0	-2	32	561	657	1,007	129	9	Test B at IB			
16	66	6	6	0	-1	32	669	660	1,008	16	1	Test B at IB			
2	66	6	6	0	0	32	581	647	1,012	14	4	Test B at BL			
17	66	6	6	0	1	32	598	648	1,020	178	8	Test B at IB			
18	66	6	6	0	2	32	586	647	1,021	14	4	Test B at IB			
19	66	6	6	0	3	32	588	660	1,027	13	3	Test B at IB			
20	66	6	6	0	4	32	598	645	1,032	12	6	Test B at IB			
21	66	6	6	0	5	32	637	655	1,041	110	6	Test B at IB			
	Paramete	r at 0%		L= 1	17,42mH			R= 5	47Ω			C= 581,67 µF			

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power

 $^{2)}$ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ BL: Balance condition, IB: Imbalance condition.

Condition B:

EUT output power PEUT = 50 % - 66 % of maximum

EUT input voltage $^{5)}$ = 50 % of rated input voltage range, ±10 %

⁵⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range =X + 0,5 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

A.7.1.2.4 Loss of mains protection according BS EN 62116														
The r	equirement is	s specifie	ed in sec	ction 10.2, t	est procedu	ure in	Anne	ex A.2.2	.4			P		
Load	imbalance (re	eal, reac	tive load	d) for test co	ondition A (EUT	outpu	ut = 25 %	% – 33 %	6)				
						Fre	quen	cy: 50+/	-0,1Hz					
	Test condition	ns					U _N =2	230+/-3	'ac	/				
					Dis	stortic	on fac	tor of ch	iokes < 2	2%				
Quality = 1														
Di	sconnection	limit		T	T	1		0,5s	1					
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactiv (% of 6.1.0	ve load Q∟ in d) 1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
22	33	3	3	0 -5 16285 563 1,016 110 Test B at IB										
23	33	3	3	0 -4 16286 557 1,015 120 Tes								Test B at IB		
24	33	3	3	0	-3	162	293	555	1,021	13	32	Test B at IB		
25	33	3	3	0	-2	162	298	558	1,026	15	50	Test B at IB		
26	33	3	3	0	-1	162	282	557	1,036	20)2	Test B at IB		
3	33	3	3	0	0	162	288	553	1,038	16	60	Test B at BL		
27	33	3	3	0	1	162	282	556	1,043	21	7	Test B at IB		
28	33	3	3	0	2	162	280	568	1,051	17	' 9	Test B at IB		
29	33	3	3	0	3	162	285	556	1,057	14	6	Test B at IB		
30	33	3	3	3 0 4 16276 557 1,061 139 Test B at IB										
31	33	3	3	0	5	162	286	563	1,068	12	29	Test B at IB		
	Paramete	r at 0%		L=	31,8mH			R= 1	0Ω			C= 315µF		

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power

 $^{2)}$ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ BL: Balance condition, IB: Imbalance condition.

Condition C:

EUT output power PEUT = 25 % – 33 % $^{5)}$ of maximum

EUT input voltage $^{6)} = <10$ % of rated input voltage range

⁵⁾ Or minimum allowable EUT output level if greater than 33 %.

⁶⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range =X + 0,1 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

A.7.1.2.5 Reconnection Ρ Test: Test should prove that the reconnection sequence starts after a minimum delay of 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 1. Under Voltage (182V) Time delay setting Measured delay 20s 28,73s Over Voltage (275V) Time delay setting Measured delay 20s 27,21s Under Frequency (47,4Hz) Time delay setting Measured delay 20s 27,58s Over Frequency (52,1Hz) Time delay setting Measured delay 20s 27,64s Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 1. At 266,2V At 180V At 47,4Hz At 52,1Hz Confirmation that the SSEG does not re-No reconnection No reconnection No reconnection No reconnection connect.

A7.1.2.6 Frequency D	rift and Step Cha	ange Stability te	est		Р					
Test:										
	Start	Change	Test Duration	С	onfirm no trip					
	Frequency									
Positive Vector Shift	49,5Hz	+50 degrees			No trip					
Negative Vector Shift	50,5Hz	-50 degrees			No trip					
Positive Frequency drift	49,0Hz to 51,0Hz	+0,95Hz/sec	2,1s		No trip					
Negative Frequency drift	51,0Hz to 49,0Hz	-0,95Hz/sec	2,1s		No trip					
						Î				

Manufacturers considering new designs should allow for the RoCoF where stability is required to be increased to, up to 2Hz per second, as proposed in the new European network codes, which are expected to come into force over the period 2014/2015. Under these conditions RoCoF will cease to be an effective loss of mains protection and is unlikely to be permitted in future revisions of this document.

For the step change test the SSEG should be operated with a measureable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 seconds to complete the test. The SSEG should not trip during this test.

For frequency drift tests the SSEG should be operated with a measureable output at the start frequency and then the frequency changed in a ramp function at 0,95Hz per second to the end frequency. On reaching the end frequency it should be maintained for a period of at least10 seconds. The SSEG should not trip during this test.

A7.1.3 Power res	ponse to ov	A7.1.3 Power response to over-frequency									
Test:											
1-min mean value [Hz]	a) 50,00	b) 50,45	c) 50,70	d) 51,15	e) 50,70	f) 50,4	5 g) 50,00				
1. Measurement a) to g): Active powe	er output > 80	0% Pn								
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00				
P _{expected} [kW]:	49,99	49,42	46,92	42,42	46,92	49,42	49,99				
P _{measured} [kW]:	49,99	48,98	46,48	41,94	46,49	49,42	49,99				
2. Measurement a) to g): Active power output 40% and 60% after freezing > 80% P_n											
Frequency [Hz]: 50,00 50,45 50,70 51,15 50,70 50,45 50,00											
P _{expected} [kW]:	25,00	24,50	22,00	17,50	22,00	24,50	25,00				
P _{measured} [kW]:	25,00	24,44	21,93	17,40	21,98	24,47	25,00				
Graph of Measuremenet 1.: Active power output > 80% Pn											
Start Stort DragI Toler Toler	Frequency Frequency ndicator ances (Hz-Gra ances (HzSto	adient) p-Gradient)	: 50.4 [H2 : 50.4 [H2 : inactive : -Inf/10.0 : n.a.]]] [%Pnom]							
			-		[᠆	1.01				
51.39	· · · · · · · · · · · · · · · · · · ·	-		~		····	-0.99				
51.23						•	-0.97				
51.07							-0.96				
₽ 50.91							-0.94 				
± 50.75			~				0.92 <u>u</u>				
50.59							0.9 <u>~</u>				
50.43							0.07				
50.27											
10.11 10.05		-			-		0.00				
0	60	120 1	180 24	10 30	9 3 6 0	4	20				
	f _{act}	– P _{AC,act} –	τ S P _{AC,SetPt}	Tol.	AvgInte	ervall(s)					

Test:

The test is conducted for two powers. First, the test must start at a power > 80% P_n ("Measurement 1"), and in a second test, for a power between 40% to 60% P_n ("Measurement 2"). In the second test, after freezing of the P_M , the available active power output must be increased to a value > 80% P_n , and after the network frequency of 50,2 Hz is fallen below, the rise of the active power gradient must be recorded.

Point g) must be held until the micro-generator is again feeding in with the active power output available.

Assessment criterion:

For f = 50,2 Hz, the value of the P_M active power currently being generated is "frozen".

a) For adjustable micro-generators when:

1) the active power reduces between measuring points b) and f) given above with the set gradient P_M per Hz for a increasing frequency (or rises for a frequency decreasing again).

2) the maximum active power gradient occurring in point is less than the configured maximum active power per minute

3) the reaction value of the setpoint determined by the gradient characteristic curve does not differ from P_n by more than $\pm 10\%$.

4) the settling time is equal or below 2 s with an intentional delay set to zero

b) For partly adjustable micro-generators

1) when they behave as in a) within their adjustment range, and

2) when, outside the adjustable range, the power fed in on leaving the adjustment range remains constant until shutdown. Shutdown must be no later than at 51,5 Hz.

Criteria:

The frequency should then be set to 49,5 Hz for 5 minutes. The output should remain at 100% of Registered Capacity.

The frequency should then be set to 49,0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 99% of Registered Capacity.

The frequency should then be set to 48,0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 97% of Registered Capacity.

The frequency should then be set to 47,6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 96,2% of Registered Capacity.

The frequency should then be set to 47,1 Hz and held at this frequency for 20 s. The Active Power output must not be below 95,0% of Registered Capacity and the Synchronous Power Generating Module must not trip in less than the 20s of the test.

A.7.1.4.1 Harmonic Current Emissions

Ρ

	Phase 1									
	Gene	rating Unit f	test	ted to BS EN 6	51000-3-12					
Generating	Unit rating per pha	se (rpp)								
	1					-				
	At 45-55% of r	ated ouput		100% of rate	ed output					
	8,3KV	V NA s s uns d		16,56	VV					
Harmonic	Value (MV) in Amps	Value (MV) i %	IV) in Value (MV) in Amps		Value (MV) in %	3-12	in %			
						1 phase	3 phase			
2nd	0,128	0,181		0,108	0,152	8	8			
3rd	0,015	0,021		0,013	0,018	21,6	N/A			
4th	0,062	0,088		0,058	0,082	4	4			
5th	0,290	0,410		0,323	0,456	10,7	10,7			
6th	0,035	0,049		0,036	0,050	2,67	2,67			
7th	0,179	0,253		0,283	0,401	7,2	7,2			
8th	0,062	0,088		0,054	0,077	2	2			
9th	0,018	0,026		0,020	0,028	3,8	N/A			
10th	0,031	0,043		0,019	0,026	1,6	1,6			
11th	0,080	0,113		0,113	0,159	3,1	3,1			
12th	0,068	0,096		0,068	0,097	1,33	1,33			
13th	0,069	0,097		0,098	0,139	2	2			
14th	0,015	0,021		0,013	0,019	N/A	N/A			
15th	0,012	0,017		0,014	0,020	N/A	N/A			
16th	0,025	0,036		0,032	0,046	N/A	N/A			
17th	0,036	0,050		0,065	0,092	N/A	N/A			
18th	0,017	0,024		0,016	0,023	N/A	N/A			
19th	0,027	0,038		0,048	0,068	N/A	N/A			
20th	0,009	0,012		0,008	0,011	N/A	N/A			
21th	0,007	0,010		0,008	0,012	N/A	N/A			
22th	0,013	0,019		0,014	0,020	N/A	N/A			
23th	0,020	0,029		0,044	0,062	N/A	N/A			
24th	0,007	0,010		0,006	0,008	N/A	N/A			
25th	0,015	0,021		0,031	0,044	N/A	N/A			
26th	0,008	0,011		0,010	0,014	N/A	N/A			
27th	0,005	0,007		0,006	0,009	N/A	N/A			
28th	0,004	0,006		0,006	0,008	N/A	N/A			
29th	0,012	0,017		0,026	0,036	N/A	N/A			

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Page 23 of 56

Report No.: .: 17TH0199-G99/1-4_4

30th	0,004	0,005	0,004	0,006	N/A	N/A
31th	0,013	0,019	0,022	0,031	N/A	N/A
32th	0,005	0,007	0,004	0,005	N/A	N/A
33th	0,004	0,006	0,005	0,007	N/A	N/A
34th	0,003	0,005	0,003	0,004	N/A	N/A
35th	0,007	0,011	0,016	0,022	N/A	N/A
36th	0,004	0,005	0,004	0,005	N/A	N/A
37th	0,007	0,010	0,013	0,019	N/A	N/A
38th	0,003	0,005	0,003	0,004	N/A	N/A
39th	0,003	0,004	0,004	0,006	N/A	N/A
40th	0,003	0,005	0,002	0,004	N/A	N/A
THD		1,13		0,70	23	13
PWHD		0,0006		0,0005	23	22

A.7.1.4.1 Harmonic Current Emissions Ρ Phase 2 Generating Unit tested to BS EN 61000-3-12 Generating Unit rating per phase (rpp) At 45-55% of rated ouput 100% of rated output 16,5kW 8,3kW Harmonic Measured Measured Measured Measured Limit in BS EN61000-Value (MV) in Value (MV) in Value (MV) in Value (MV) in 3-12 in % % Amps Amps % 3 phase 1 phase 2nd 0,131 0,184 0,177 0,250 8 8 N/A 3rd 0.016 0,023 0,022 0,031 21.6 4th 0,029 0,041 0,025 0,035 4 4 5th 0,282 0,398 0,311 0,439 10,7 10,7 6th 0,036 0,050 0,040 0,056 2,67 2,67 7th 0,184 0,260 0,289 0,408 7,2 7,2 2 2 8th 0,057 0,081 0,045 0,063 0,013 0,019 0,017 0,023 3,8 N/A 9th 0,081 0,074 0,105 10th 0,115 1,6 1,6 11th 0.084 0,119 0,117 0,165 3,1 3.1 12th 0,036 0,051 0,034 0,049 1,33 1,33 2 2 13th 0,071 0,100 0,102 0,143 14th 0,057 0,080 0,059 0.084 N/A N/A N/A 15th 0,012 0,017 0,014 0,020 N/A N/A 16th 0,024 0,034 0,035 0,050 N/A 17th 0.035 0,050 0.066 0.093 N/A N/A N/A 18th 0.016 0,023 0.016 0.023 N/A 0,026 0,037 0,047 0,067 N/A N/A 19th 20th 0,011 0,015 0,012 0.017 N/A N/A 21th 0,008 0,011 0,009 0,012 N/A N/A 22th 0,012 0,018 0,008 0,011 N/A N/A N/A 23th 0,022 0,031 0,044 0.061 N/A 0,014 N/A 24th 0,020 0,014 0,020 N/A 25th 0.016 0,022 0,034 0,048 N/A N/A 26th 0,006 0,009 0,009 0,013 N/A N/A 27th 0,005 0,006 0,006 0,009 N/A N/A 0.005 0,007 0.006 0.008 N/A N/A 28th 29th 0,014 N/A 0,020 0,027 0,038 N/A

Copyright @ Bureau Veritas Consumer Products Services Germany GmbH

This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

30th	0,006	0,008	0,006	0,008	N/A	N/A
31th	0,013	0,018	0,022	0,031	N/A	N/A
32th	0,006	0,008	0,005	0,007	N/A	N/A
33th	0,004	0,006	0,005	0,007	N/A	N/A
34th	0,004	0,006	0,003	0,005	N/A	N/A
35th	0,008	0,011	0,016	0,023	N/A	N/A
36th	0,003	0,004	0,003	0,004	N/A	N/A
37th	0,009	0,013	0,015	0,021	N/A	N/A
38th	0,004	0,005	0,005	0,007	N/A	N/A
39th	0,003	0,004	0,004	0,006	N/A	N/A
40th	0,004	0,005	0,004	0,005	N/A	N/A
THD		1,13		0,73	23	13
PWHD		0,0011		0,0006	23	22

A.7.1.4.1 Harmonic Current Emissions Ρ Phase 3 Generating Unit tested to BS EN 61000-3-12 Generating Unit rating per phase (rpp) At 45-55% of rated ouput 100% of rated output 16,5kW 8,3kW Harmonic Measured Measured Measured Measured Limit in BS EN61000-Value (MV) in Value (MV) in Value (MV) in Value (MV) in 3-12 in % % Amps Amps % 3 phase 1 phase 2nd 0,090 0,127 0,118 0,167 8 8 N/A 3rd 0,012 0.016 0.020 0,028 21.6 4th 0,035 0,050 0,037 0,052 4 4 5th 0,278 0,393 0,310 0,439 10,7 10,7 6th 0,030 0,043 0,030 0,042 2,67 2,67 7th 0,169 0,239 0,273 0,386 7,2 7,2 2 2 8th 0,064 0,091 0,055 0,078 0,018 0,025 0,018 0,025 3,8 N/A 9th 0,077 0,109 0,072 0,102 10th 1,6 1,6 11th 0,081 0,115 0,112 0,158 3,1 3.1 12th 0,038 0,054 0,037 0,052 1,33 1,33 2 2 13th 0.060 0,084 0,089 0,125 14th 0.052 0,074 0,053 0,075 N/A N/A 0,013 N/A 15th 0,018 0,015 0,021 N/A N/A 16th 0,024 0,034 0,030 0,042 N/A 17th 0.038 0,054 0,070 0.098 N/A N/A N/A 18th 0.016 0,023 0.017 0,024 N/A 0,026 0,037 0,042 0,060 N/A N/A 19th 20th 0,010 0,014 0,012 0.017 N/A N/A 21th 0,007 0,011 0,009 0,013 N/A N/A 22th 0,014 0,020 0,014 0,020 N/A N/A N/A 23th 0,024 0,034 0,045 0.064 N/A 0,014 N/A 24th 0,020 0,014 0,020 N/A 25th 0.015 0.021 0.031 0.044 N/A N/A 26th 0,006 0,009 0,005 0,008 N/A N/A 27th 0,005 0,008 0,006 0,009 N/A N/A 0.005 0,007 0,004 0.006 N/A N/A 28th 29th 0,013 0,024 N/A 0,019 0,033 N/A

Copyright © Bureau Veritas Consumer Products Services Germany GmbH

This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Page 27 of 56

Report No.: .: 17TH0199-G99/1-4_4

30th	0,005	0,007	0,004	0,006	N/A	N/A
31th	0,012	0,017	0,020	0,029	N/A	N/A
32th	0,005	0,008	0,004	0,006	N/A	N/A
33th	0,004	0,006	0,005	0,007	N/A	N/A
34th	0,004	0,006	0,004	0,005	N/A	N/A
35th	0,008	0,011	0,017	0,024	N/A	N/A
36th	0,003	0,005	0,003	0,005	N/A	N/A
37th	0,009	0,012	0,014	0,020	N/A	N/A
38th	0,004	0,005	0,005	0,007	N/A	N/A
39th	0,002	0,003	0,005	0,006	N/A	N/A
40th	0,003	0,005	0,003	0,004	N/A	N/A
THD		1,07		0,68	23	13
PWHD		0,0010		0,0005	23	22

Ρ

A.7.1.4.2 Power factor

Test: Output power 216,2V 230V 253V Measured at three voltage levels and at full output. Voltage to be maintained within ±1.5% of the stated level during the test. 20% 1,000 1,000 1,000 full output. Voltage to be maintained within ±1.5% of the stated level during the test. 75% 1,000 1,000 1,000 itest. 100% 1,000 1,000 1,000 Limit >0.95 >0.95 >0.95					
Output power 216,2V 230V 253V Measured at three voltage levels and at full output. Voltage to be maintained within ±1.5% of the stated level during the test. 20% 1,000 1,000 1,000 full output. Voltage to be maintained within ±1.5% of the stated level during the test. 75% 1,000 1,000 1,000 itest. 100% 1,000 1,000 itest.	Test:				
20% 1,000 1,000 1,000 full output. Voltage to be maintained within ±1.5% of the stated level during the test. 50% 1,000 1,000 1,000 test. 75% 1,000 1,000 1,000 test. 100% 1,000 1,000 1,000 test.	Output power	216,2V	230V	253V	Measured at three voltage levels and at
50% 1,000 1,000 1,000 test. 75% 1,000 1,000 1,000 1,000 100% 1,000 1,000 1,000 1,000 Limit >0.95 >0.95 >0.95	20%	1,000	1,000	1,000	full output. Voltage to be maintained within ±1.5% of the stated level during the
75% 1,000 1,000 1,000 100% 1,000 1,000 1,000 Limit >0.95 >0.95 >0.95	50%	1,000	1,000	1,000	test.
100% 1,000 1,000 1,000 Limit >0.95 >0.95 >0.95	75%	1,000	1,000	1,000	
Limit >0.95 >0.95 >0.95	100%	1,000	1,000	1,000	
	Limit	>0,95	>0,95	>0,95	

Note:

The power factor capability of the SSEG shall conform to EN 50438. When operating at Registered Capacity the SSEGshall operate at apower factor within the range 0,95 lagging to 0,95 leading relative to the voltage waveform unless otherwise agreed with the DNO eg for power factor improvement.

The test set up shall be such that the Inverter supplies full load to the DNO's Distribution System via the power factor (pf) meter and the variac as shown below in figure A5. The Inverter pf should be within the limits given in 5.6, for three test voltages 230 V -6%, 230V and 230 V +10%.

A.7.1.4.3 Voltage Flicker										
		Star	ting			Stop	ping	I	Runr	ning
	d _{max}	d	с	d _(t)	d _{max}	c	lc	d _(t)	P _{st}	Plt 2 hours
Measured values at test impedance	4,79%	4,79	9%	0,00ms	5,81%	5,1	3%	0,00ms	0,15	0,12
Normalised to Standard impedance	5,58%	6,3	9%	0,00ms	7,74%	6,8	4%	0,00ms	0,20	0,16
Values for maximum impedance	3,40%	3,3	5%	0,00ms	3,77%	3,3	0%	0,00ms	0,09	0,07
Limits set under BS EN 61000-3-11	4%	3,3	8%	3,3% ^{500ms}	4%	3,3	3%	3,3% ^{500ms}	1,0	0,65
						•				
Tost impodance	R			0,15	Ω			XI	0,15	Ω
r est impedance	Z			0,21	Ω					
Normalised to Standard	R			0,24	Ω			XI	0,15	Ω
impedance	Z			0,28	Ω					
Maximum Impedance	Rmax	x		0,10	Ω)	Klmax	0,06	Ω
Zmax $0,12$ Ω										
Note:										
Test performed according to EN 61000-3-11 for inverter above 16A per phase.										

A.7.1.4.4 DC injection Ρ DCinAC Test for Britain (G99-1), DCinAC measurement in normal operation Normative parameters: AMaxOfs in normal operation = 181.3 mA, Tolerance=0.0 mA Power Stage [% VA_{Nom}] 10 ± 5 100 \pm 5 55 ± 5 4997.8 27450.4 49969.3 Active Power [W] Voltage [V_{RMS}] L1/L2/L3 230/230/230 230/230/230 231/231/231 Current $[A_{RMS}]$ 7.3/7.3/7.3 39.7/39.7/39.7 72.2/72.2/72.2 Power Factor [-] 1.000 1.000 1.000 abs. DC component [mA] 21.95/66.61/66.89 42.79/38.09/38.15 45.45/43.84/35.51 rel. DC component [% I_Nom] 0.03/0.09/0.09 0.06/0.05/0.05 0.06/0.06/0.05 P_{AC} I DC,L1 I DC,L2 I DC,L3 I DC,Limit 400 50 [kw] Current [mA] 10 200 Power 30 0 Active 20 Ы -200 10 -400 0 50 100 150 200 250 30Õ 0 Time [s] 400 **∓**50 [kw] Current [mA] 40 200 Power 30 Active 0 Ы -200 -400 ___[0 300 150 50 100 200 250 0 Time [s] 1000 :50 [kw] Current [mA] 40 500 Power a Active 20 Ы -500 10 -1000 0 100 150 200 250 300 Ø 50 Time [s] Note:

DC-injection is tested at each phase of the inverter and a limit of 0,25% per phase was used as pass criteria.

A.7.1. 5 Short Circuit Current Contribution for Inverters

For a directly coupled SSEG			For	For a Inverter SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps	
Peak Short Circuit current	i _p	N/A	20ms	229,97	80,25	
Initial Value of aperiodic current	A	N/A	100ms	13,98	72,58	
Initial symmetrical short-circuit current*	I _k	N/A	250ms	13,91	72,92	
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	13,87	73,44	
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	2,52	In seconds	

Note:

The values of voltage and current should be recorded for a period of up to 1 second when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report (Appendix 4) including the time taken for the Inverter to trip.

A7.1.6 Self Monitoring – Solid state Disconnection.	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.	N/A
Note:	
Unit do not provide solid state switching relays. In case the semiconductor bridge is switched of voltage on the output drops to 0. In this case the relays on the output will also open (Functional internal automatic disconnection device according to VDE 0126-1-1).	ff, then the safety of the

Logic Interface (input port). Required by paragraph 11.1.3	Р
Confirm that an input port is provided and can be used to shut down the module.	Yes
Note: A Modbus signal can be used to cease Active Power output within 5 s	

Annex No. 1

EMC test report

The complete test report is stored at Bureau Veritas Consumer Products Services Germany GmbH Türkheim in project 17TH0199.

Test Report EMC-Testing

STP50-40-MOW

CE-MOW_Zertifizierung

Accredited According to DIN EN ISO/IEC 17025

© SMA Solar Technology AG

Test Documents

Edition 1.0

Page 1/419

STP50-40-MOW-510:LE2317

STP50-40-MOW

This report is based on the test report template: PB_Kopf_EMV_EN Version 14 from 05.09.2016 DHC-Vision ID 780468 Editor: Berger Niels Released by: Irmer Soeren

Revision History

Document Number STP50-40-MOW	Edition and Revision Type ')		Annotations	Author
-510:LE2317	1.0	А	First Edition	Berger, Niels

- A: First Edition or minor modifications due to errors or improvements in the documentation. Replacing former version in brackets
 - B: Modifications maintaining full and upward compatibility. Replacing former version in brackets
 - C: Modifications limiting or excluding compatibility. Valid only in combination with former version in brackets

	X directions Road		26.06.2017 X Pedro This to terior hyperias
lestet by	as representative of Niels Berger Signiert von: Andreas Rauch	Released by	Authorized signatory Signiert von: Peter Thomae

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 2/419

STP50-40-MOW

Explanation of Symbols Used

For ensuring the understanding of this test report please note the following explanations of the symbols being used.

This symbol indicates an important comment. For this reason read these sections carefully.

This symbol indicates an example.

This symbol indicates an opinion or an interpretation to circumstances.

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 3/419

STP50-40-MOW

Table of Contents

1	0	verview	v on Results	7
	1.1	Picture	es of EUT	10
	1.1	Emissi	on	12
	1.2	lmmui	nity	13
2	0	peratin	g State and Test Setup	
3	М	odifica	tion of EUT	
4	En	nission.		
	4.1	Cond	ucted emissions CE MOW ETSI 50Hz 400V AC	
	4.	1.1	Test requirements	
	4.	1.2	Test setup	25
	4.	1.3	Test details	
	4.	1.4	Conductive Voltage and Current Emissions Overview:	
	4.	1.5	Appendix: Photos	
	4.2	Cond	ucted emissions FCC CISPR 22 60Hz 480V AC	136
	4.	2.1	Test requirements	136
	4.	2.2	Test setup	136
	4.	2.3	Test details	
	4.	2.4	Conductive Voltage and Current Emissions Overview:	
	4.	2.5	Appendix: Photos	
	4.3	Disco	ntinuous disturbance	
	4.	3.1	Test requirements	
	4.	3.2	Test setup	
	4.	3.3	Test details	
	4.	3.4	Clickrate Emissions Overview:	
	4.	3.5	Appendix: Photos	
	4.4	Radia	ted emission FCC CISPR 22 60Hz 480V AC	
	4.	4.1	Test requirements	
	4.	4.2	Test setup	
	4.	4.3	Test details	

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 4/419

Test document		STP50-40-MOW
4.4.4	Radiated Electric Emissions Overview:	
4.4.5	Appendix: Photos	
4.5 Radio	ated emission CE MOW ETSI 50Hz 400V AC	
4.5.1	Test requirements	
4.5.2	Test setup	
4.5.3	Test details	
4.5.4	Radiated Electric Emissions Overview:	
4.5.5	Appendix: Photos	
5 Immunity	/	
5.1 Test S	Surge	
5.1.1	Test requirements	
5.1.2	Test setup	
5.1.3	Test Log	
5.1.4	Appendix: Photos	
5.2 Test I	Power frequency magnetic field	
5.2.1	Test requirements	
5.2.2	Test setup	
5.2.3	Test Log	
5.2.4	Appendix: Photos	
5.3 Test	Voltage dips and interruptions	
5.3.1	Test requirements	
5.3.2	Test setup	
5.3.3	Test Log	
5.3.4	Appendix: Photos	
5.4 Test (Conducted RF disturbance	
5.4.1	Test requirements	
5.4.2	Test setup	
5.4.3	Test Log	
5.4.4	Appendix: Photos	
5.5 Test I	Electrostatic discharge	
5.5.1	Test requirements	

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 5/419

STP50-40-MOW

5.5.2	Test setup	
5.5.3	Test Log	
5.5.4	Appendix: Photos	
5.6 Test R	adiated immunity	
5.6.1	Test requirements	
5.6.2	Test setup	
5.6.3	Test Log	
5.6.5	Appendix: Photos	
5.7 Test Fo	ast transient / burst	
5.7.1	Test requirements	
5.7.2	Test setup	
5.7.3	Test Log	415
5.7.4	Appendix: Photos	

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 6/419

STP50-40-MOW

1 Overview on Results

Client: SMA Solar Technology AG Sonnenallee 1 34266 Niestetal Pinne, Julia	Manufacturer: SMA Solar Technology AG Sonnenallee 1 34266 Niestetal	Test Department and Site: SMA Solar Technology AG Sonnenallee 1 EMV- und Umweltlabor (EUL) 34266 Niestetal / Germany Building 4
Order / Job Account: Project Title: Teamcenter Project: Teamcenter Object Report-ID Test Type / Limits and Require- ments:	912 / 822292 STP50-40-MOW_2017-04-04 TCP_000091 D_00124843 01 LOE+ EUL Te EN61000-6-2:2005 German ve EN61000-6-3:2007+A1:2011 (ETSI EN301 489-1/-17:2017-0: (European standard) EN55022:2010 Class B Germa	rsion German version 2_V2.1.1/2017-02_V3.1.1 n version
Type of Test Item: Label of Test Item: Test Specification:	Photovoltaic Power Converter STP50-40 -	

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 7/419

STP50-40-MOW

Identification of the EUT: (equipment under test)

EUT- Number:	Part of EUT	Serial Number	Hardware- Version:	FA- bzw. Firmware- Version:	Remark
2844	DUT	3000137553		1.1.6.R	Main Unit
	PL-ACRLY5000- 01.02	3000095700/3000132286	R2/R3	3519715/3521301	Status Mod2 / Mod6
	01.01	3000074041/0000248	R1	3519059/3504906	Status Mod2 / Mod6
	PL-DST5000- 01.02	3000078492/3000078445	Q5	3519456	Status Mod2 / Mod6
	PL-DCEMV5000- 01.02	3000159566/3000159563	R2	3526747	Status Mod2 / Mod6
	PL-ACFI5000.01	3000155860/3000155859	S1	-	Status Mod2 / Mod6
	PL-ACFG5000.01	3000155878/3000155879	S1	-	Status Mod2 / Mod6
	PL-BFS500.BG2	3000137553/3000080051	R2	3519716	Status Mod2 / Mod6
	KP20.BG1	0013884	R2	2.2.2.R	Status Mod2 / Mod6
	HP	3000080051	18 02	1.1.6.R	Status Mod2 / Mod6
	PL-DCY5000	-	R1	-	Status Mod2 / Mod6
	PL-LED5000- 01.01	0000146	P3	-	Status Mod2 / Mod6
2839	DUT	3000137550		1.1.6.R	Main Unit
	PL-ACRLY5000- 01.02	3000095677	R3?	-3519715	
	PL-AST5000- 01.02	3000074030	R1	-3519059	
	PL-DST5000- 01.02	3000078463	Q5	-3919456	
	PL-DCEMV5000- 01.02	3000074105	R2	-3519060	
	PL-ACFI5000-01	000073	R1	-000073	
	PL-ACFG5000-01	000097	R1	-000097	
	PL-BFS500.BG2	3000080050	R2	3519716	
	KP20.BG1	0013911	R2	2.2.2R	
	HP			1.1.6.R	
	PL-DCY5000	Handmuster		Handmuster	
	PL-LED5000- 01.02	3000095751	P3		

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 8/419

STP50-40-MOW

2849	DUT	19910000217		1.1.6.R	Main Unit
	PL-ACRLY5000-				
	01.02	3000132260	R4	3521301	
	PL-AST5000				
	01.02	3000074049	R1	3519059	
	PL-DST5000-				
	01.02	3000078436	Q5	3519456	
	PL-DCEMV5000-				
	01.01	0000189	R3	3504910	
	PL-ACFI5000.01	3000155858	S1	(H)	
	PL-ACFG5000.01	3000155881	S1		
	PL-BFS500.BG1	0000217	R2	3504912	
	KP20.BG1	0013888	R2	2.2.2R	
	HP	?		1.1.6R	
	PL-DCY5000	Handmuster		Handmuster	
	PL-LED5000-				
	01.02	3000095743	P3		

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 9/419

STP50-40-MOW

1.1 Pictures of EUT

112220 ACC Trans. In CASE The Second	STP50-40 Gohrke, Christer	EUT 2844 25042737 COMPANY COMPANY STP50-40-MOW Print June	1 EUT 281 1 14 02 2017 EUT 2849 00 05 2017
IP40.4.11.150	10	#2849	選
\$N-3000080050 #2839	#2844	l.	

© SMA Solar Technology AG STP

STP50-40-MOW-510:LE2317

Page 10/419

STP50-40-MOW

Торіс	Description		
Standards chosen:	Tested standards were chosen together with client (see above). Correct Standards needed for declaration of conformity and normative classifica- tion of EUT obtains to client.		
Validity of test results: Validity of test results: The results listed in this test report apply for the EUT tested only. A in mechanical construction, circuitry or components used will have the results. Duplication or Copies of any excerpts from this report without a written approval of the test department.			
Other standards:	Within this project no inquiry were made to point out further standards required for this type of equipment tested (e.g. ETSI-standard or similar). It's the responsibil- ity of the customer finding different relevant standards.		
Priority of other standards:	In case of testing according EN55024 please be advised, that there are addi- tional standards (e.g. ETSI harmonised standards), that cover the immunity re- quirements for telecommunication applications and which must be preferred		

An overview on the measurement uncertainty values can be found in file:" measurement uncertainty overview "

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 11/419

STP50-40-MOW

1.1 Emission

	equipment under	requirement		
test and selected standard	test	standard	additional	
	(EUT no.)	modificatio	on remarks	
Requirements according EN61000-6-3:2007+A1:2011				
Radiated emission according to:	Radiated emission according to:		not tested	
EN55016-2-3:2006	2044	2+3+4+5 -		
Discontinuous disturbance according to:	2840	passed	not tested	
EN55014-1:2006+A1:2009	2849	none -		
Conducted emissions according to:	2014	passed	failed	
EN55022:2010	2844	2+3+4+5+6 -		
Requirements according ETSI EN301 489-1/-17:2017-02_V2.1.1/2017-02_V3.1.1				
Radiated emission according to:	2044	passed	not tested	
EN55032:2015	2844	2+3+4+5 -		
Conducted emissions according to:	2044	passed	failed	
EN55016-2-1:2009	2844	2+3+4+5+6 -		
Requirem	ents according	EN55022:2010 Class B		
		passed	passed	
Radiated emission according to:	2844			
EN55016-2-3:2006		2+3+4+5+6 -	61.00 1.07	
Conducted emissions according to:	2844	passed	failed	
EN55022:2010		2+3+4+5+6 -		
test summary*		standard requirement /	additional requirement /	
		remarks	remarks	
Requirements according				
EN61000-6-3:2	007+A1:2011	passed	failed	
Requirem				
ETSI EN301 489-1/-17:2017-02_V2.1.1/2017-				
	02_V3.1.1	passed	failed	
Requirem	ents according			
EN55022:2010 Class B		passed	failed	

For all appropriated EN standards, the German version (DIN EN) was applied. * only valid with the specified remarks.

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 12/419

STP50-40-MOW

1.2 Immunity

	equipment under	requirement			
test and selected standard	Test	standard	additional		
	(EUT no.)	modification	remarks		
Requirements according EN61000-6-2:2005					
Fast transient / burst according to:	2944	passed	passed		
EN61000-4-4:2004	2044	1 [-			
Radiated immunity according to:	2944				
EN61000-4-3:2002	2044	1+2 (+3+4+5+6 non-active WIFI) -			
Electrostatic discharge according to:	2830	passed	not tested		
EN61000-4-2:1995	2037	1 -			
Conducted RF disturbance according to:	2830				
EN61000-4-6:2014	2037	none -			
Voltage dips and interruptions according to:	2844	passed	not tested		
EN61000-4-11:2004	2044	1+2 -			
Surge according to:	2844	passed	passed		
EN61000-4-5:1995	1+2 -				
Requirements according ETSI EN301 489-1/-17:2017-02_V2.1.1/2017-02_V3.1.1					
Fast transient / burst according to:	2944	passed	passed		
EN61000-4-4:2012	2044	11-			
Radiated immunity according to:	2844				
EN61000-4-3:2006 + A1:2008 + A2:2010	2044	1+2 (+3+4+5+6 non	-active WIFI) -		
Electrostatic discharge according to:	2830	passed	not tested		
EN61000-4-2:2009	2037	1 [-			
Conducted RF disturbance according to:	2830				
EN61000-4-6:2009	2007	none -			
Voltage dips and interruptions according to:	2844	passed	not tested		
EN61000-4-11:2004	2044	1+2 -			
Surge according to:	2944	passed	passed		
EN61000-4-5:2006	2044	1+2 -			
tost summanu*		standard requiremen	additional requi-		
lesi soninary		/ remarks	rement / remarks		
Requirements according EN6	1000-6-2:2005	passed	passed		
Requirements according ETSI EN301 4	89-1/-17:2017-				
02_V2.1.1/2	017-02_V3.1.1	passed	passed		

For all EN standards used, the German version (DIN EN) was applied.

* only valid with the specified remarks.

Important note for the test report:

© SMA Solar Technology AG

STP50-40-MOW-510:LE2317

Page 13/419

Annex No. 2 Pictures of the unit

Page 50 of 56

Enclosure side view

Enclosure rear view

Annex No. 3 Test Equipment list

Date(s) of test performance: 2019-04-16 to 2019-04-18

Equipment	Internal no.:	Manufacturer:	Туре:	Serial no.:	Last calibration
Spitzenberger & Spies Test system for PV- inverter	1091	Spitznberger & Spies	PVS 127500 / EMV D 75000/PAS / PRU 12750 / Mobile box / RLC 3500/2.5	A5191 00 / A5192 00 / A5193 00 / A5194 00 / A5195 00	N/A
Dewetron Multi Channel Data Acquisition System	1092	Dewetron	DEWE-800 / DEWE-30-16 with voltage and current modules	12130573, 56121690	Aug-18
Hygro-/ Thermo- / Barometer	1073	Geisinger	GFTB 100	90258040	Mar-19
Current transducer	1096	LEM Danfysik	IT 400-S	1131010011	Aug-18
Current transducer	1097	LEM Danfysik	IT 400-S	1131010012	Aug-18
Current transducer	1098	LEM Danfysik	IT 400-S	1131010013	Aug-18

Date(s) of test performance: 2019-08-29 to 2019-09-02

Equipment	Internal No.	Manufacturer	Туре	Serial No.	Last Calibration
EM Test	6603067	Ametek	Netwave 90.3	P1848224738	N/A
Dewetron Multi Channel Data Acquisition System	6002410	Dewetron	DEWE-800- 820-SMA with voltage and current moduls	14120113	Mar-19
Current Transducer	6002214	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002208	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002209	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002210	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002204	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002205	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002206	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002200	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002201	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002326	LEM Danfysik	IT 200-S	N/A	Mar-19
Current Transducer	6002327	LEM Danfysik	IT 200-S	N/A	Mar-19
Current Transducer	6002328	LEM Danfysik	IT 200-S	N/A	Mar-19
Current Transducer	6002212	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002202	LEM Danfysik	IT 1000-S	N/A	Mar-19

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Report No.: .: 17TH0199-G99/1-4_4

Current Transducer	6002207	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002300	LEM Danfysik	IT 200-S	N/A	Mar-19
Current Transducer	6002213	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002211	LEM Danfysik	IT 1000-S	N/A	Mar-19
Current Transducer	6002203	LEM Danfysik	IT 1000-S	N/A	Mar-19
Hygro-/Thermo- /Barometer	449	Greisinger	GFTB 100	1507001	Oct-18

End Of Test Report

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.