G83/2 Appendix 4 Type Verification Test Report

		nufacturer/sup endation G83/		ition of compl	iance with the requirements				
SSEG Type	reference n	umber	Bluegen	Bluegen					
SSEG Type			Bluegen						
System Supplier name			Ceramic F	uel Cells Gn	nbH				
Address			Boos-Frei 52525 He Germany	mery-Str. 62 insberg					
Tel	+49 (0) 24	452 15 3760		Fax	+49 (0) 2452 15 3755				
E:mail				Web site	www.bluegen.info				
			Connection Option						
		2.0	kW single	phase, single,	split or three phase system				
Maximum ra capacity, use	e separate	-	kW three p	hase					
sheet if more connection of		-	kW two ph	ases in three	phase system				
		-	kW two ph	ases split pha	se system				
I certify on be Embedded (above SSEC perform as s site modifica G83/2.	ehalf of the Generators, G Type refe stated in this ations are re	that all produ rence number Type Verifica equired to en	med above a ucts manufa will be man ation Test Re sure that th	ctured/supplie nufactured an eport, prior to e product me	turer/supplier of Small Scale ed by the company with the d tested to ensure that they shipment to site and that no eets all the requirements of				
Signed	Richard P	•	On behalf		note dans				
	CHIEF (OPERATING	CENAMIC	fuel cents	05/05/2014				

Note that testing can be done by the manufacturer of an individual component, by an external test house, or by the supplier of the complete system, or any combination of them as appropriate.

OFFICER

amvit

Where parts of the testing are carried out by persons or organisations other than the supplier then the supplier shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Power Quin Annex A		nonics. The re	equirement is	s specified in	section 5 4	I.1, test procedure		
_	rating per pl	hase (rpp)	2.0	2.0 kW		NV=MV*3.68/rpp		
Harmonic		5% of rated	100% of rated output					
1	Measured Value (MV) in Amps 230.00V 4.318A	Normalised Value (NV) in Amps	Measured Value (MV) in Amps (230.03V) 8.641A	Normalised Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above		
2	0.013	0.013	0.004	0.004	1.080			
3	0.010	0.010	0.016	0.016	2.300			
4	0.008	0.008	0.002	0.002	0.430			
5	0.017	0.017	0.024	0.024	1.140			
6	0.008	0.008	0.004	0.004	0.300			
7	0.000	0.000	0.009	0.009	0.770			
8	0.004	0.004	0.012	0.012	0.230			
9	0.039	0.039	0.045	0.045	0.400			
10	0.005	0.005	0.008	0.008	0.184			
11	0.027	0.027	0.020	0.020	0.330			
12	0.002	0.002	0.004	0.004	0.153			
13	0.068	0.068	0.127	0.127	0.210			
14	0.005	0.005	0.013	0.013	0.131			
15	0.014	0.014	0.032	0.032	0.150			
16	0.003	0.003	0.007	0.007	0.115			
17	0.020	0.020	0.030	0.030	0.132			
18	0.007	0.007	0.017	0.017	0.102			
19	0.013	0.013	0.035	0.035	0.118			
20	0.010	0.010	0.050	0.050	0.092			

21	0.009	0.009	0.014	0.014		0.160
					0.107	0,100 ss sv
22	0.001	0.001	0.014	0.014	0.084	
23	0.005	0.005	0.009	0.009	0.098	0.147
24	0.000	0.000	0.004	0.004	0.077	
25	0.006	0.006	0.010	0.010	0.090	0.135
26	0.000	0.000	0.004	0.004	0.071	
27	0.005	0.005	0.003	0.003	0.083	0.124
28	0.005	0.005	0.005	0.005	0.066	
29	0.004	0.004	0.005	0.005	0.078	0.117
30	0.008	0.008	0.009	0.009	0.061	
31	0.005	0.005	0.003	0.003	0.073	0.109
32	0.009	0.009	0.010	0.010	0.058	
33	0.001	0.001	0.005	0.005	0.068	0.102
34	0.010	0.010	0.010	0.010	0.054	
35	0.003	0.003	0.003	0.003	0.064	0.096
36	0.004	0.004	0.005	0.005	0.051	
37	0.001	0.001	0.002	0.002	0.061	0.091
38	0.001	0.001	0.001	0.001	0.048	
39	0.001	0.001	0.003	0.003	0.058	0.087
40	0.002	0.002	0.001	0.001	0.046	
H			 ' 	- 		1 1 1

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

For CHP installations the measured value is the normalised value. Only one Bluegen installation per phase is permitted.

Power Quality 5.4.2, test prod					licker	The rec	uirement	is specif	fied in section	
, , , , ,	Startin				Stopping			Running		
	d _{max}	d _c	d _(t)	d _{max}	d _c	d _(t)	P _{st}	P _{lt} 2 h	nours	
Measured Values	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.04	0.04		
Normalised to standard impedance and 3.68kW for multiple units	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.04	0.04		
Limits set under BS EN 61000-3-2	4%	3.3%	3.3% 500ms	4%	3.3%	3.3% 500ms	1.0	0.65		
Test start date)	1/5/	2014	Test e	end date)	1/5/2	2014		
Test location		TU\	/ Rhine	land, N	1elbour	ne Aus	tralia			

Power quali Annex A or E		ection. The	requirement is	specified in section 5.5, test procedure in
Test power level	10% (193W)	55% (1093W)	100% (1987W)	
Recorded value	9.5mA	9 mA	11mA	
as % of rated AC current	0.110%	0.104%	0.127%	
Limit	0.25%	0.25%	0.25%	

TY CONTRACTOR OF THE PROPERTY	Power Quality. Power factor. The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2							
	216.2V (216.18)	230V (230.31)	253V (253.17)	Measured at three voltage levels and at full output. Voltage to be maintained				
Measured value	0.9992	0.9993	0.9993	within ±1.5% of the stated level during the test.				
Limit	>0.95	>0.95	>0.95					

Function	Setting		Trip test	·	"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5Hz	20s	47.45Hz	20.24s	47.7Hz 25s	No trip
U/F stage 2	47Hz	0.5s	46.95Hz	0.77s	47.2Hz 19.98s	No trip
					46.8Hz 0.48s	No trip
O/F stage 1	51.5Hz	90s	50.55Hz	90.24s	51.3Hz 95s	No trip
O/F stage 2	52Hz	0.5s	52.05Hz	0.75s	51.8Hz 89.98s	No trip
					52.2Hz 0.48s	No trip

Function	Setting		Trip test		"No trip tes	"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V stage 1	200.1V	2.5s	198.06V	2.73s	204.1V 3.5s	No trip	
U/V stage 2	184V	0.5s	182.6V	0.73s	188V 2.48s	No trip	
					180V 0.48s	No trip	
O/V stage 1	262.2V	1.0s	260.5V	1.23s	258.2V 2.0s	No trip	
O/V stage 2	273.7V	0.5s	273.2V	0.5s*	269.7V 0.98s	No trip*	
					277.7V 0.48s	No trip*	

Note for Voltage tests the Voltage required to trip is the setting ±3.45V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

^{*} The Inverter shutdown due to an AC overvoltage fault, but reconnection resumed again at 258.2V.

Protection. Loss	of Mains	test. The re	equirement	is specified	in section	5.3.2, test		
procedure in Annex	x A or B 1.3.4							
To be carried out a Power levels.	it three outpu	t power level	s with a tol	erance of p	lus or minus	5% in Test		
Test Power	10%	55%	100%	10%	55%	100%		
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of		
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG		
network	output	output	output	output	output	output		
Trip time. Limit is 0.5 seconds	74ms	63ms	65ms	148ms	56ms	62ms		
For Multi phase SS				wn correct	y after the r	emoval of a		
single fuse as well Test Power	10%	55%	100%	10%	55%	100%		
Balancing load	95% of	95% of	95% of	10% 105% of	105% of	105% of		
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG		
network	output	output	output	output	output	output		
Trip time. Ph1	NA	NA	NA	NA	NA	NA		
fuse removed	19/3			177	177	1373		
Test Power	10%	55%	100%	10%	55%	100%		
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of		
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG		
network	output	output	output	output	output	output		
Trip time. Ph2	NA	NA	NA	NA	NA	NA		
fuse removed								
Test Power	10%	55%	100%	10%	55%	100%		
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of		
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG		
network	output	output	output	output	output	output		
Trip time. Ph3	NA	NA	NA	NA	NA	NA		
fuse removed		L			<u> </u>			
Note for technolog								
seconds in establis					aximum shu	t down time		
could therefore be	up to 1.0 sec	onds for thes	e technolog	ies.	<u> </u>	0		
Indicate additional	Indicate additional shut down time included in above results. Oms							
Note as an alternatests should be rec	•			N 62116.	The followin	g sub set of		
Test Power and	33%	66%	100%	33%	66%	100%		
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P		
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10		
Trip time. Limit is 0.5s	NA	NA	NA	NA	NA	NA		

Protection. Frequency change, Stability test The requirement is specified in section 5.3.3, test procedure in Annex A or B 1.3.6									
	Start Frequency	Change	End Frequency	Confirm no trip					
Positive Vector Shift	49.5Hz	+9 degrees		No disconnect					
Negative Vector Shift	50.5Hz	- 9 degrees		No disconnect					
Positive Frequency drift	49.5Hz	+0.19Hz/sec	51.5Hz	No disconnect					
Negative Frequency drift	50.5Hz	-0.19Hz/sec	47.5Hz	No disconnect					

Protection. Re-connection timer. The requirement is specified in section 5.3.4, test procedure in Annex A or B 1.3.5							
Test should prove that the reconnection sequence starts after a minimum delay of 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 1.							
Time delay setting	Measured delay			no reconnect just outside		Itage or frequency s of table 1.	
20s							
	Confirmation that the SSEG does No No No No reconnect not re-connect.						

Fault level contribution. The Annex A or B 1.4.6	ne requirer	ment is s	specified in s	section 5.7.	test procedure in
For a directly coupled SSEG	For a Inverter SSEG				
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	i _p	NA	20ms	112V (pk)	14A (pk)
Initial Value of aperiodic current	Α	NA	100ms	83V (pk)	12.5A (pk)
Initial symmetrical short- circuit current*	I _k	NA	250ms	73V (pk)	0A
Decaying (aperiodic) component of short circuit current*	İ _{DC}	NA	500ms	73V (pk)	0A
Reactance/Resistance Ratio of source*	×/ _R	NA	Time to trip	0.15s	In seconds

Self-Monitoring solid state switching The requirement is specified in section 5.3.1, No specified test requirements.	Yes/or NA
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 seconds.	NA

Additional comment	.5		